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(in four spacetime dimensions)

whereV is the vacuum energy and m is the mass scale of the
leading tower of states.

m and V are small (in Planck units) in asymptotic limits.

In our world, V ~ 10~122 What if we live
near an asymptotic limit?
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In other words, suppose we live near an infinite distance limit

and the light tower is related to the CC

What can we say about the nature of the tower?

m < A% ~ 2.31 meV
So there must be a tower of light fields at this energy scale.

We have not seen such a tower, so it must couple very weakly
(if at all) to SM fields.

But Swampland/String Theory also allows us to make a prediction
about the nature of the tower.
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- Decompactification of n dimensions.
-Tower is KK modes

-Local EFT breakdown at hlgher- Q Planck scale
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- Perturbative string limit Both Ilmlts are ™

; it | decompactlflcatlon ;
-Perturbative string tower - Ilmlts' z

-Local EFT breakdown at the string sale i

-There are also KK modes at g€ scale,
decompact.to 10d

(simply because the only string theories we know are |0dim)
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Decompactification limits are significantly constrained:

= =y i
Astrophysical bounds: " < 107" pum (n = 2)

[Hannestad and Raffelt ’03]

m~ ' < 44 pym G—"18)

Dev. from Newton’s laws (n=1): m™" < 30 um
[Lee et al "21]

m < O(1)AY* correspondsto m™' 2 O(1) 88 um

Only n=1 is marginally compatible, due to the O(l)
factors, and only for a micrometer-sized extra
dimension.

(for more detailed argument that O(1)<I| and estimate, see our paper)
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So, if we live in an asymptotic limit, and the vacuum energy is
controlled by a tower, only possibility is a

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is similar to Large Extra Dimension models [Arkani-
Hamed,Dimopoulos, Dvali 98], but a very different scale and motivation

Ordinary LED Dark Dimension

-Motivated by EWV hierarchy -Motivated by Cosmological Hierarchy

il Ml‘i>4 ~ TeV

M ~m'PM%? ~ 10'° GeV
SM potential instability avoided!
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SM fields live in a small, but finite-sized region of the dark
dimension:

We can only potentially see it with SM fields via neutrino

MASSES: [Arkani-Hamed, Dimopoulos and Dvali *98 |Dienes,Dudas,Gherghetta *99 | Carena, Li, Machado 'l 7]

2 H 2 :
My, ~ . <A > (active) Setting M, ~m,
M
M, ~m ~ AL/4 (sterile) ties EW and cosmo problem:s,
A1/6M1/3
(HY ~ B S s 100 GeV.



There are many angles to explore in this scenario:

Nature of DM. Black holes? Tower? (See Dieter’s talk)

Neutrino tower predictions (see Eduardo Gonzalo’s parallel
talk)

Signatures in Ultra-High-Energy Cosmic rays [Anchordoqui 22]

Connection to the HO tension?

On top of the most obvious, verifiable experimental
prediction: A large dark extra dimension of

micrometer size, and a fundamental quantum gravity
scale of [0M 0 GeV.
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part of the talk.

| will briefly tell you how, in work soon to appear with Hector Parra
de Freitas, (IPhT Saclay), we discovered

three new string theories

with sixteen supercharges.
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Hector devised a fascinating bottom-up algorithm,
extrapolating from known examples, that predicted the
existence of these string theories, without giving any clue about
their stringy embedding.

This talk is about the stringy
embedding of the theories Hector
found. For an introduction to his
techniques, see his parallel talk on
Thursday.

Hector is a PhD student w. Mariana Grana & applying for
postdocs this fall!
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The new theories we found involve turning on discrete
parameters that are often ignored in string model building.

Consider for instance type | as an O9 orientifold of |IB.
The RR axion is mapped as

C() =7 —C()

under the orientifold. So we usually set it to zero.

But since CO is periodic, Cy ~ Cy+ 1

we can also set @ . SIRCemat o =gt

This is called the Sethi string [Sethi ’|3], and the above is an
example of a discrete theta angle.
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The Sethi string has remained puzzling, since it seemed OK,
but it led to all sorts of pathologies under dualities.

We understood what happens with it: There is a certain
O(32) gauge transformation [Witten *98] that shifts CO. So the
Sethi string is completely equivalent to ordinary type |.

However, we also found that, in some cases, the Sethi idea
can work, and produce a new string theory.

Consider |lIB on a circle with a Wilson line for (—1)FL

This is a 9d SUSY theory, with | vector multiplet (rank [).
(Called the Asymmetric |IB Orbifold, or AOB background)

[Komargodski et al ’09]
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The Wilson line also projects out Cy — —Cj but this time

1
C()N§

is physical, and a hew string theory in nine dimensions.

We have shown it lives in a hew component of moduli space.

Previously we knew only two (last one discovered by Hellerman in
'04)

IB on S|
W.L for (- 1) FL

B oSl e
W.L for Omega &

0O8+/0O08- with
CI discrete WL

.

Self-dual point at gs=2

Duality group: I'0(2)
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When compactified on a circle to 8d, the theory admits an M-
theory description as compactification on a nontrivial KB fibration

KB — St

Known component is KB x S* so the theta angle is geometrized.

To find a susy M-theory compactification to 8d with 16
supercharges, one needs a Ricci-flat 3-manifold which
preserves covariantly constant spinors, but which can be
non-orientable.

These are called Bieberbach manifolds and classified in math.
lit; only the two classes above exist. So we are not
missing anything else this obvious.
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The most important feature of this theory is that it violates
string BPS completeness [Kim-Shiu-Vafa’19]:

Strings charged
2-form B in gravity Lodi under B

/
E

The string of charge | is not BPS. Even charges are.

First example of a violation with |6 supercharges.
(fOI‘ particles, see [Heidenreich-Reece-Rudelius ’I6])

Many Swampland papers using anomaly inflow on strings assume
this; these need to be revisited.
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We also found two nhew compohnents of moduli space in 7d,
associated to periods

fe [o

on a [2; Total space is lIB on a T2 fibration over a circle
We find examples with sublattices of index 2 and 3;

there are probably a lot more examples in lower
dimensions and with less SUSY.

A lot to discover!



A Dark
Dimension

A single large, extra
dimension of size

Gravity becomes
strongly coupled at

Tower of dark KK
modes; connections to
DM, neutrinos, and
cosmic rays

New String
Theories

Three new SUSY string theories
in 9d,8d and /d

Some of the nhew models do not
have a full lattice of BPS strings

Exploring all ramifications!?
Lower-dimensional analogues?
How large can the sublattice be?



Thank you!



