A DARK DIMENSION & NEW STRING THEORIES

Miguel Montero
Harvard
Stringpheno 2022, Liverpool
July 4th 2022

StringPheno

StringPheno

But rather, it is going to be a

PhenoString

talk

StringPheno

But rather, it is going to be a

(PhenoString

[2205.12293, w. Cumrun Vafa & Irene Valenzuela]

talk

Continuation of Irene's talk to its logical conclusion: The **Dark Dimension**

StringPheno

But rather, it is going to be a

(PhenoString)

[2205.12293, w. Cumrun Vafa & Irene Valenzuela]

talk

Continuation of Irene's talk to its logical conclusion: The **Dark**

Dimension

New string theories in high dimensions

(joint work with H. Parra de Freitas, to appear)

In asymptotic corners of moduli space, we have

$$V = m^{\alpha}, \quad 2 \le \alpha \le 4$$

(in four spacetime dimensions)

where V is the vacuum energy and m is the mass scale of the leading tower of states.

In asymptotic corners of moduli space, we have

$$V = m^{\alpha}, \quad 2 \le \alpha \le 4$$

(in four spacetime dimensions)

where V is the vacuum energy and m is the mass scale of the leading tower of states.

m and V are small (in Planck units) in asymptotic limits.

In asymptotic corners of moduli space, we have

$$V = m^{\alpha}, \quad 2 \le \alpha \le 4$$

(in four spacetime dimensions)

where V is the vacuum energy and m is the mass scale of the leading tower of states.

m and V are small (in Planck units) in asymptotic limits.

In our world, $V \sim 10^{-122}$

In asymptotic corners of moduli space, we have

$$V = m^{\alpha}, \quad 2 \le \alpha \le 4$$

(in four spacetime dimensions)

where V is the vacuum energy and m is the mass scale of the leading tower of states.

m and V are small (in Planck units) in asymptotic limits.

In our world,
$$V \sim 10^{-122}$$
 What if we live near an asymptotic limit?

What can we say about the nature of the tower?

$$m \lesssim \Lambda^{1/4} \sim 2.31 \,\mathrm{meV}$$

What can we say about the nature of the tower?

$$m \lesssim \Lambda^{1/4} \sim 2.31 \,\mathrm{meV}$$

So there must be a tower of light fields at this energy scale.

What can we say about the nature of the tower?

$$m \lesssim \Lambda^{1/4} \sim 2.31 \,\mathrm{meV}$$

So there must be a tower of light fields at this energy scale.

We have not seen such a tower, so it must couple very weakly (if at all) to SM fields.

What can we say about the nature of the tower?

$$m \lesssim \Lambda^{1/4} \sim 2.31 \,\mathrm{meV}$$

So there must be a tower of light fields at this energy scale.

We have not seen such a tower, so it must couple very weakly (if at all) to SM fields.

But Swampland/String Theory also allows us to make a prediction about the **nature** of the tower.

- Decompactification of n dimensions.

- Decompactification of n dimensions.
 - -Tower is KK modes

- Decompactification of n dimensions.
 - -Tower is KK modes
 - -Local EFT breakdown at higher-dim Planck scale:

- Decompactification of n dimensions.
 - -Tower is KK modes
 - -Local EFT breakdown at higher-dim Planck scale:
- Perturbative string limit

- Decompactification of n dimensions.
 - -Tower is KK modes
 - -Local EFT breakdown at higher-dim Planck scale:

$$\hat{M}^{4+n} = m^{\frac{n}{n+2}} M_{\rm Pl}^{\frac{2}{2+n}}$$

- Perturbative string limit
 - -Perturbative string tower

- Decompactification of n dimensions.
 - -Tower is KK modes
 - -Local EFT breakdown at higher-dim Planck scale:

$$\hat{M}^{4+n} = m^{\frac{n}{n+2}} M_{\text{Pl}}^{\frac{2}{2+n}}$$

- Perturbative string limit
 - -Perturbative string tower
 - -Local EFT breakdown at the string scale

- Decompactification of n dimensions.
 - -Tower is KK modes
 - -Local EFT breakdown at higher-dim Planck scale:

$$\hat{M}^{4+n} = m^{\frac{n}{n+2}} M_{\text{Pl}}^{\frac{2}{2+n}}$$

- Perturbative string limit
 - -Perturbative string tower
 - -Local EFT breakdown at the string scale
 - -There are also KK modes at same scale, decompact. to 10d

(simply because the only string theories we know are 10dim)

- Decompactification of n dimensions.
 - -Tower is KK modes
 - -Local EFT breakdown at higher-dim Planck scale:

 $\hat{M}^{4+n} = m^{\frac{n}{n+2}} M_{\text{Pl}}^{\frac{2}{2+n}}$

- Perturbative string limit
 - -Perturbative string tower

Both limits are decompactification limits!

- -Local EFT breakdown at the string scale
- -There are also KK modes at same scale, decompact to 10d

(simply because the only string theories we know are 10dim)

Astrophysical bounds:
$$m^{-1} \le 10^{-4} \, \mu m$$
 $(n=2)$

[Hannestad and Raffelt '03]
$$m^{-1} \leq 44 \, \mu m \qquad (n=1)$$

Astrophysical bounds:
$$m^{-1} \leq 10^{-4} \, \mu m$$
 $(n=2)$ [Hannestad and Raffelt '03] $m^{-1} \leq 44 \, \mu m$ $(n=1)$

Dev. from Newton's laws (n=1):
$$m^{-1} \leq 30 \, \mu m$$
 [Lee et al '21]

Astrophysical bounds:
$$m^{-1} \leq 10^{-4} \, \mu m$$
 $(n=2)$ [Hannestad and Raffelt '03] $m^{-1} \leq 44 \, \mu m$ $(n=1)$

Dev. from Newton's laws (n=1):
$$m^{-1} \leq 30 \, \mu m$$
 [Lee et al '21]

$$m \lesssim \mathcal{O}(1) \Lambda^{1/4}$$
 corresponds to $m^{-1} \gtrsim \mathcal{O}(1)\,88\,\mu m$

Astrophysical bounds:
$$m^{-1} \leq 10^{-4} \, \mu m$$
 $(n=2)$ [Hannestad and Raffelt '03] $m^{-1} \leq 44 \, \mu m$ $(n=1)$

Dev. from Newton's laws (n=1):
$$m^{-1} \leq 30 \, \mu m$$
 [Lee et al '21]

$$m \lesssim \mathcal{O}(1) \Lambda^{1/4}$$
 corresponds to $m^{-1} \gtrsim \mathcal{O}(1)\,88\,\mu m$

Only n=1 is marginally compatible, due to the O(1) factors, and only for a micrometer-sized extra dimension.

(for more detailed argument that O(1)<1 and estimate, see our paper)

So, if we live in an asymptotic limit, and the vacuum energy is controlled by a tower, only possibility is a single large extra dimension,

single large extra dimension,

the Dark Dimension

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is **similar** to Large Extra Dimension models [Arkani-Hamed,Dimopoulos, Dvali '98], but a very different **scale** and motivation

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is **similar** to Large Extra Dimension models [Arkani-Hamed,Dimopoulos, Dvali '98], but a very different **scale** and motivation

Ordinary LED

Dark Dimension

-Motivated by EW hierarchy

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is **similar** to Large Extra Dimension models [Arkani-Hamed,Dimopoulos, Dvali '98], but a very different **scale** and motivation

Ordinary LED

Dark Dimension

-Motivated by EW hierarchy

$$\hat{M} = M_P^{d>4} \sim TeV$$

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is **similar** to Large Extra Dimension models [Arkani-Hamed,Dimopoulos, Dvali '98], but a very different **scale** and motivation

Ordinary LED

Dark Dimension

-Motivated by EW hierarchy

 $\hat{M} = M_P^{d>4} \sim TeV$

-Motivated by Cosmological Hierarchy

So, if we live in an asymptotic limit, and the vacuum energy is controlled by a tower, only possibility is a

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is **similar** to Large Extra Dimension models [Arkani-Hamed,Dimopoulos, Dvali '98], but a very different **scale** and motivation

Ordinary LED

Dark Dimension

-Motivated by EW hierarchy

$$\hat{M} = M_P^{d>4} \sim TeV$$

-Motivated by Cosmological Hierarchy

$$\hat{M} \sim m^{1/3} M_P^{2/3} \sim 10^{10} \, GeV$$

So, if we live in an asymptotic limit, and the vacuum energy is controlled by a tower, only possibility is a

single large extra dimension,

the Dark Dimension

(it is dark because we have not seen it yet)

It is **similar** to Large Extra Dimension models [Arkani-Hamed,Dimopoulos, Dvali '98], but a very different **scale** and motivation

Ordinary LED

Dark Dimension

-Motivated by EW hierarchy

-Motivated by Cosmological Hierarchy

$$\hat{M} = M_P^{d>4} \sim TeV$$

$$\hat{M} \sim m^{1/3} M_P^{2/3} \sim 10^{10} \, GeV$$

SM potential instability avoided!

SM fields live in a **small**, but finite-sized region of the dark dimension:

)
$l_{ m GUT}$		
	l	

SM fields live in a **small**, but finite-sized region of the dark dimension:

We can only potentially see it with SM fields via neutrino

Masses: [Arkani-Hamed, Dimopoulos and Dvali '98 | Dienes, Dudas, Gherghetta '99 | Carena, Li, Machado '17]

$$m_{
u} \sim rac{y^2 \langle H
angle^2}{\hat{M}}$$
 (active)

SM fields live in a **small**, but finite-sized region of the dark dimension:

We can only potentially see it with SM fields via neutrino

masses: [Arkani-Hamed, Dimopoulos and Dvali '98 | Dienes, Dudas, Gherghetta '99 | Carena, Li, Machado '17]

$$m_{
u} \sim rac{y^2 \langle H
angle^2}{\hat{M}}$$
 (active)

$$M_{
u} \sim m \sim \Lambda^{1/4}$$
 (sterile)

SM fields live in a small, but finite-sized region of the dark dimension:

We can only potentially see it with SM fields via neutrino

masses: [Arkani-Hamed, Dimopoulos and Dvali '98 | Dienes, Dudas, Gherghetta '99 | Carena, Li, Machado '17]

$$m_{
u} \sim rac{y^2 \langle H
angle^2}{\hat{M}}$$
 (active)

Setting
$$M_{
u} \sim m_{
u}$$

$$M_
u \sim m \sim \Lambda^{1/4}$$
 (sterile)

 $M_{\rm H} \sim m \sim \Lambda^{1/4}$ (sterile) ties EW and cosmo problems,

$$\langle H \rangle \sim \frac{\Lambda^{1/6} M_{pl}^{1/3}}{y \, \lambda^{2/3}} \sim 10 - 10^3 \, GeV$$

There are many angles to explore in this scenario:

- Nature of DM. Black holes? Tower? (See Dieter's talk)
- Neutrino tower predictions (see Eduardo Gonzalo's parallel talk)
- Signatures in Ultra-High-Energy Cosmic rays [Anchordoqui '22]
- Connection to the H0 tension?

On top of the most obvious, verifiable experimental prediction: A large dark **extra dimension of micrometer size**, and a fundamental quantum gravity scale of 10^10 GeV.

We are now done with the Pheno, & come to the

String

part of the talk.

We are now done with the Pheno, & come to the

String

part of the talk.

I will briefly tell you how, in work soon to appear with Héctor Parra de Freitas, (IPhT Saclay), we discovered

three new string theories

We are now done with the Pheno, & come to the

String

part of the talk.

I will briefly tell you how, in work soon to appear with Héctor Parra de Freitas, (IPhT Saclay), we discovered

three new string theories

with sixteen supercharges.

Hector devised a fascinating bottom-up algorithm, extrapolating from known examples, that **predicted** the existence of these string theories, without giving any clue about

their stringy embedding.

Hector devised a fascinating bottom-up algorithm, extrapolating from known examples, that **predicted** the existence of these string theories, without giving any clue about their stringy embedding.

This talk is about the **stringy embedding** of the theories Hector found. For an introduction to his techniques, see **his parallel talk** on Thursday.

Hector devised a fascinating bottom-up algorithm, extrapolating from known examples, that **predicted** the existence of these string theories, without giving any clue about

their stringy embedding.

This talk is about the **stringy embedding** of the theories Hector found. For an introduction to his techniques, see **his parallel talk** on Thursday.

Hector is a PhD student w. Mariana Graña & applying for postdocs this fall!

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

under the orientifold. So we usually set it to zero.

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

under the orientifold. So we usually set it to zero.

But since C0 is periodic,

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

under the orientifold. So we usually set it to zero.

But since C0 is periodic, $C_0 \sim C_0 + 1$

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

under the orientifold. So we usually set it to zero.

But since C0 is periodic, $C_0 \sim C_0 + 1$

we can also set $C_0 \sim \frac{1}{2}$

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

under the orientifold. So we usually set it to zero.

But since C0 is periodic, $C_0 \sim C_0 + 1$

we can also set $C_0 \sim \frac{1}{2}$ since $-\frac{1}{2} = \frac{1}{2} + 1$.

Consider for instance **type I** as an O9 orientifold of IIB.

The RR axion is mapped as

$$C_0 \rightarrow -C_0$$

under the orientifold. So we usually set it to zero.

But since C0 is periodic, $C_0 \sim C_0 + 1$

we can also set $C_0 \sim \frac{1}{2}$ since $-\frac{1}{2} = \frac{1}{2} + 1$.

This is called the **Sethi string** [Sethi '13], and the above is an example of a **discrete theta angle**.

We understood what happens with it: There is a certain O(32) gauge transformation [Witten '98] that shifts C0. So the **Sethi string** is completely **equivalent** to ordinary type I.

We understood what happens with it: There is a certain O(32) gauge transformation [Witten '98] that shifts C0. So the **Sethi string** is completely **equivalent** to ordinary type I.

However, we also found that, in some cases, the Sethi idea can work, and produce a new string theory.

We understood what happens with it: There is a certain O(32) gauge transformation [Witten '98] that shifts C0. So the **Sethi string** is completely **equivalent** to ordinary type I.

However, we also found that, in some cases, the Sethi idea can work, and produce a new string theory.

Consider IIB on a circle with a Wilson line for $(-1)^{F_L}$

We understood what happens with it: There is a certain O(32) gauge transformation [Witten '98] that shifts C0. So the **Sethi string** is completely **equivalent** to ordinary type I.

However, we also found that, in some cases, the Sethi idea can work, and produce a new string theory.

Consider IIB on a circle with a Wilson line for $(-1)^{F_L}$

This is a 9d SUSY theory, with I vector multiplet (rank I).

We understood what happens with it: There is a certain O(32) gauge transformation [Witten '98] that shifts C0. So the **Sethi string** is completely **equivalent** to ordinary type I.

However, we also found that, in some cases, the Sethi idea can work, and produce a new string theory.

Consider IIB on a circle with a Wilson line for $(-1)^{F_L}$

This is a 9d SUSY theory, with I vector multiplet (rank I).

(Called the Asymmetric IIB Orbifold, or AOB background)

[Komargodski et al '09]

The Wilson line also projects out $C_0
ightarrow -C_0$ but this time

$$C_0 \sim \frac{1}{2}$$

is physical, and a **new** string theory in nine dimensions.

The Wilson line also projects out $C_0 o -C_0$ but this time

$$C_0 \sim \frac{1}{2}$$

is physical, and a **new** string theory in nine dimensions.

We have shown it lives in a **new** component of moduli space. Previously we knew only two (last one discovered by Hellerman in '04)

The Wilson line also projects out $C_0 o -C_0$ but this time

$$C_0 \sim \frac{1}{2}$$

is physical, and a **new** string theory in nine dimensions.

We have shown it lives in a **new** component of moduli space. Previously we knew only two (last one discovered by Hellerman in '04)

$$KB \to S^1$$

$$KB \to S^1$$

Known component is ${
m KB} imes S^1$ so the theta angle is geometrized.

$$KB \to S^1$$

Known component is ${
m KB} imes S^1$ so the theta angle is geometrized.

To find a susy M-theory compactification to 8d with 16 supercharges, one needs a Ricci-flat 3-manifold which preserves covariantly constant spinors, but which can be **non-orientable**.

$$KB \to S^1$$

Known component is ${
m KB} imes S^1$ so the theta angle is geometrized.

To find a susy M-theory compactification to 8d with 16 supercharges, one needs a Ricci-flat 3-manifold which preserves covariantly constant spinors, but which can be **non-orientable**.

These are called Bieberbach manifolds and classified in math. lit; only the two classes above exist. So we are not missing anything else this obvious.

2-form B in gravity multiplet

2-form B in gravity multiplet

Strings charged under B

$$\int_{\Sigma} B$$

2-form B in gravity multiplet

Strings charged under B

$$\int_{\Sigma} B$$

The string of charge I is not BPS. Even charges are.

2-form B in gravity multiplet

Strings charged under B

$$\int_{\Sigma} B$$

The string of charge I is not BPS. Even charges are.

First example of a violation with 16 supercharges. (for particles, see [Heidenreich-Reece-Rudelius '16])

2-form B in gravity multiplet

Strings charged under B

$$\int_{\Sigma} B$$

The string of charge I is not BPS. Even charges are.

First example of a violation with 16 supercharges. (for particles, see [Heidenreich-Reece-Rudelius '16])

Many Swampland papers using anomaly inflow on strings assume this; these need to be revisited.

We also found **two new components** of moduli space in 7d, associated to periods

$$\int C_2, \quad \int B_2$$

We also found **two new components** of moduli space in 7d, associated to periods

$$\int C_2, \quad \int B_2$$

on a T2; Total space is IIB on a T2 fibration over a circle

We find examples with sublattices of index 2 and 3;

We also found **two new components** of moduli space in 7d, associated to periods

$$\int C_2, \quad \int B_2$$

on a T2; Total space is IIB on a T2 fibration over a circle

We find examples with sublattices of index 2 and 3;

there are probably a lot more examples in lower dimensions and with less SUSY.

A lot to discover!

A Dark Dimension

&

New String Theories

- A single large, extra dimension of size
- Gravity becomes strongly coupled at
- Tower of dark KK modes; connections to DM, neutrinos, and cosmic rays

- Three new SUSY string theories in 9d,8d and 7d
- Some of the new models do not have a full lattice of BPS strings
- Exploring all ramifications?
 Lower-dimensional analogues?
 How large can the sublattice be?

Thank you!